2 Exponential \& Logarithmic Functions

2.1 Exponential functions

Rules of exponents:

- $a^{m+n}=a^{m} \cdot a^{n}$
- $a^{m-n}=\frac{a^{m}}{a^{n}}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $(a \cdot b)^{m}=a^{m} \cdot b^{m}$
- $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{a^{n}}$

For a fixed number a, where $a>0$ and $a \neq 1$, define the value of a^{x} properly, as the range of x extends from integers to rational numbers, and then to real numbers. This gives the idea of the exponential function.

Sketch the graphs of $y=a^{x}$ for both $0<a<1$ and $a>1$, stating the domain and range for each case, and noting the difference in monotonicity.

Exercise 12.

1. State the natural domain and range of the function $y=(0.14)^{\frac{1}{x}}$.
2. Sketch the graphs of $f(x)=-3^{x-1}+1, g(x)=2^{1-2 x}$ and $h(x)=\left|\left(\frac{1}{2}\right)^{x}-2\right|$.
3. Compare the following pairs of values:
(a) $3^{2.8}$ and $3^{2.7}$
(b) $0.7^{-0.1}$ and $0.7^{-0.2}$
(c) $1.23^{-1.1}$ and $1.23^{-0.9}$
(d) 0.6^{-3} and 0.6^{-4}
4. Given that $0.2^{m}>0.2^{n}$, compare the values of m and n.
5. For different possible values of a, solve the inequality $a^{3 x-5}>a^{4 x+1}$.
6. Determine whether the equation $\left(a^{b}\right)^{c}=a^{\left(b^{c}\right)}$ holds in general.
7. Given that the maximum value of the function $f(x)=a^{2 x}+2 a^{x}-1$, where $a>0$ and $a \neq 1$, on the interval $-1 \leq x \leq 1$ is 14 , find the value of a.
8. $(\ddagger) \quad$ If a non-zero continuous function $f(x)$ defined on \mathbb{R} has the property $f(x+y)=f(x) f(y)$ for all real numbers x and y, show that $f(x)=a^{x}$ for some $a>0$.

2.2 Logarithms

For $a>0$ and $a \neq 1$, if $y=a^{x}$, then we define the logarithm to base a as $x=\log _{a} y$.
Rules of logarithms include:

- $\log _{a} 1=0 ; \quad \log _{a} a=1 ; \quad \log _{a} a^{x}=a^{\log _{a} x}=x$
- $\log _{a}(x y)=\log _{a} x+\log _{a} y ; \quad \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
- $\log _{a} x^{n}=n \log _{a} x ; \quad \log _{a^{n}} x=\frac{1}{n} \log _{a} x ; \quad \log _{a^{m}} x^{n}=\frac{n}{m} \log _{a} x$
- $\log _{a} b=\frac{1}{\log _{b} a} ; \quad \log _{a} b=\frac{\log _{c} b}{\log _{c} a}$

You may wish to write respective rules of exponents for the above equations.
Special bases: $\lg A=\log _{10} A$, and $\ln B=\log _{\mathrm{e}} B$, where $\mathrm{e}=2.718281828459045 \ldots$ is a special irrational number.

Exercise 13.

1. Simplify the following expressions:

$$
\log _{5} 125 ; \quad \log _{6}\left(\frac{1}{216}\right) ; \quad \log _{\frac{1}{4}} 8 \sqrt{2} ; \quad \log _{2}\left(4^{7} \times \sqrt{8^{3}}\right) ; \quad\left(\log _{4} 3+\log _{8} 3\right)\left(\log _{3} 2+\log _{9} 2\right)
$$

2. Find the value of $x y$ given that $\log _{11} x=2$ and $\log _{y} 27=-3$.
3. Find the root of the equation $8^{2+x}=3 \times 9^{x}$, giving your answer exactly in terms of logarithms.
4. Solve the equation $3^{x}=2^{1-2 x}$, giving your answer to three decimal places.
5. Solve the simultaneous equations:

$$
\left\{\begin{array}{l}
3^{x}=5^{y} \\
x+y=1
\end{array}\right.
$$

giving your answers exactly in terms of logarithms.
6. Express $\log _{10}(5 \sqrt{10})-\frac{1}{3} \log _{10} 2.7-\log _{10}\left(\frac{10}{9}\right)$ in the form of $c+\log _{10} d$, where c and d are rational numbers.
7. Prove the following identities:
(a) $a^{\log _{c} b}=b^{\log _{c} a}$
(b) $\log _{a}\left(\frac{u}{v}\right)+\log _{a}\left(\frac{v}{w}\right)+\log _{a}\left(\frac{w}{u}\right)=0$.
(c) $\log _{a} b \log _{c} d=\log _{a} d \log _{c} b$.
8. Solve the following equations
(a) $\log _{2}(x+2)+\log _{2} x=3$
(b) $\sqrt{3 \log _{5} x-2}-3 \log _{5} x+4=0$
(c) $3 \cdot 4^{x}-10 \cdot 2^{x}+3=0$
(d) $7^{-x}+7^{|x|}=4$
(e) $\ln (x-3)+2 \ln (x+1)=3 \ln (x-1)$
(f) $\log _{\frac{1}{2}}\left(9^{x}+1\right)+\log _{\sqrt{2}}\left(3^{x}-2\right)+1=0$
(g) $\frac{\log _{3} x+2}{\log _{9} x-2}=\log _{\sqrt{3}} x-4$
(h) (\dagger) $\quad \log _{x} 2 \cdot \log _{x} 3+6=\log _{x} 72$

2.3 Logarithmic functions

Sketch the graphs of $y=\log _{a} x$ in two cases: $0<a<1$ and $a>1$, stating the domain and range for each case, and noting the difference in monotonicity.

Exercise 14.

1. Compare the following pairs of values:
(a) $\log _{7} 0.6$ and $\log _{7} 0.8$
(b) $\log _{0.4} 4$ and $\log _{0.4} 5$
(c) $\log _{\frac{3}{5}} 1.4$ and $\log _{\frac{3}{5}} 1.5$
(d) $\log _{2.1} 0.9$ and $\log _{2.2} 0.9$
(e) $\log _{\frac{4}{5}} \pi$ and $\log _{\frac{5}{6}} \pi$
2. Sketch the graphs of:
(a) $f_{1}(x)=\log _{\frac{1}{4}}(2-x)$
(b) $f_{2}(x)=2-\log _{\frac{1}{4}} x$
(c) $g_{1}(x)=\left|\log _{3}(4 x+1)\right|$
(d) $g_{2}(x)=\log _{3}|4 x+1|$
(e) $g_{3}(x)=\log _{3}(4|x|+1)$
3. Given that $\log _{0.2} m<\log _{0.2} n$, compare the values of m and n.
4. Given two functions $f(x)=\log _{a}(1+x)$, and $g(x)=\log _{a}(1-x)$, where $a>0$ and $a \neq 1$.
(a) State the natural domain of $h(x)=f(x)+g(x)$.
(b) Determine whether h is an even function or an odd, or neither.
5. The function f is given by $f: x \mapsto \log _{a}(1+x)$, where $x>-1$. Define its inverse, f^{-1}, in a similar form.
6. Solve the inequality $\log _{2}\left(a^{2 x}+2 a^{x}-2\right)<0$, where $a>0$ and $a \neq 1$.
7. (\dagger) Given that the function $f(x)=\log _{a}\left(a-k a^{x}\right)$, where $a>0$ and $a \neq 1$, is a self-inverse function, find the value of k. When k has this value, solve the inequality $f(x) \geq 1$.
8. (\dagger) Given that the domain of the function $f(x)=\log _{3} \frac{m x^{2}+8 x+n}{x^{2}+1}$ is \mathbb{R}, and that its range is $0 \leq x \leq 2$, find the values of m and n.

Exercise 15.

1. A radioactive source has a half-life of 20 years. Initially its mass is 4.5 kg , find
(a) the remaining mass after 76 years,
(b) the time taken such that the remaining mass is only 0.05 kg .
2. An experiment was conducted to discover how fast a particular type of tree grows over time. The results are summarized in the table below, where t is measured in years, and h is the height of the tree being measured, in meters.

t	10	20	30	40
h	2.50	3.10	3.45	3.70

A model is given by $h=a \log _{10} t+b$, where a and b are constants. Find the values of a and b, and estimate by how many years this tree will grow up to the height of 5 meters.
3. The time taken, T seconds, to compile a file with a source code of x lines by a particular programme is modeled as an exponential function: $T=A c^{x}$. An experiment was conducted, and the results are summarized in the table below.

x	50	100	150	200
T	0.658	1.082	1.779	2.926

Find the values of A and c, and estimate the shortest source code such that its compiling time exceeds 1 minute.
4. (\dagger) To nine decimal places, $\log _{10} 2=0.301029996$, and $\log _{10} 3=0.477121255$.
(a) Calculate $\log _{10} 5$ and $\log _{10} 6$ to three decimal places.
(b) Show that $5 \times 10^{47}<3^{100}<6 \times 10^{47}$.
(c) Hence write down the first digit of 3^{100}.
(d) Find the first digit of each of the following numbers: $2^{1000} ; 2^{10000}$; and 2^{100000}.
5. $(\ddagger) \quad$ If a continuous function $f(x)$ defined on \mathbb{R}^{+}has the property $f(x y)=f(x)+f(y)$ for all positive numbers x and y, show that $f(x)=\log _{a} x$ for some $a>0$ and $a \neq 1$.

